0%

十大常见算法核心思想

二分查找算法(非递归):

  1. 二分查找算法有递归和非递归方式,下面我们讲解二分查找算法的非递归方式
  2. 二分查找法只适用于从有序的数列中进行查找(比如数字和字母等),将数列排序后再进行查找
  3. 二分查找法的运行时间为对数时间 O(㏒₂n) ,即查找到需要的目标位置最多只需要㏒₂n 步,假设从[0,99]的 队列(100 个数,即 n=100)中寻到目标数 30,则需要查找步数为㏒₂100 , 即最多需要查找 7 次( 2^6 < 100 < 2^7)

分治算法:

  1. 分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或 相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题 的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变 换)……
  2. 分治算法可以求解的一些经典问题
  • 二分搜索
  • 大整数乘法
  • 棋盘覆盖
  • 合并排序
  • 快速排序
  • 线性时间选择
  • 最接近点对问题
  • 循环赛日程表
  • 汉诺塔

动态规划算法:

  1. 动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解 的处理算法
  2. 动态规划算法与分治算法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这 些子问题的解得到原问题的解。
  3. 与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。 ( 即下一个子 阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解 )
  4. 动态规划可以通过填表的方式来逐步推进,得到最优解.

KMP 算法:

  1. KMP 是一个解决模式串在文本串是否出现过,如果出现过,最早出现的位置的经典算法

  2. Knuth-Morris-Pratt 字符串查找算法,简称为 “KMP 算法”,常用于在一个文本串 S 内查找一个模式串 P 的 出现位置,这个算法由 Donald Knuth、Vaughan Pratt、James H. Morris 三人于 1977 年联合发表,故取这 3 人的 姓氏命名此算法.

  3. KMP 方法算法就利用之前判断过信息,通过一个 next 数组,保存模式串中前后最长公共子序列的长度,每次 回溯时,通过 next 数组找到,前面匹配过的位置,省去了大量的计算时间。参考资料:https://www.cnblogs.com/ZuoAndFutureGirl/p/9028287.html

  4. 暴力匹配算法:如果用暴力匹配的思路,并假设现在 str1 匹配到 i 位置,子串 str2 匹配到 j 位置,则有: - 如果当前字符匹配成功(即 str1[i] == str2[j]),则 i++,j++,继续匹配下一个字符

  • 如果失配(即 str1[i]! = str2[j]),令 i = i - (j - 1),j = 0。相当于每次匹配失败时,i 回溯,j 被置为 0。
  • 用暴力方法解决的话就会有大量的回溯,每次只移动一位,若是不匹配,移动到下一位接着判断,浪费了大量 的时间。(不可行!)
  • 暴力匹配算法实现.

贪心算法:

  1. 婪算法(贪心算法)是指在对问题进行求解时,在每一步选择中都采取最好或者最优(即最有利)的选择,从而 希望能够导致结果是最好或者最优的算法2) 贪婪算法所得到的结果不一定是最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果

普里姆算法:

普利姆(Prim)算法求最小生成树,也就是在包含 n 个顶点的连通图中,找出只有(n-1)条边包含所有 n 个顶点的 连通子图,也就是所谓的极小连通子图 普利姆的算法如下:

  1. 设 G=(V,E)是连通网,T=(U,D)是最小生成树,V,U 是顶点集合,E,D 是边的集合
  2. 若从顶点 u 开始构造最小生成树,则从集合 V 中取出顶点 u 放入集合 U 中,标记顶点 v 的 visited[u]=1
  3. 若集合 U 中顶点 ui 与集合 V-U 中的顶点 vj 之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将 顶点 vj 加入集合 U 中,将边(ui,vj)加入集合 D 中,标记 visited[vj]=1
  4. 重复步骤②,直到 U 与 V 相等,即所有顶点都被标记为访问过,此时 D 中有 n-1 条边
  5. 提示: 单独看步骤很难理解,我们通过代码来讲解,比较好理解.
  6. 图解普利姆算法如图:
    普利姆算法的图解分析

克鲁斯卡尔算法:

  1. 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。
  2. 基本思想:按照权值从小到大的顺序选择 n-1 条边,并保证这 n-1 条边不构成回路
  3. 具体做法:首先构造一个只含 n 个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森 林中不产生回路,直至森林变成一棵树为止
  4. 迪杰斯特拉算法:迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个结点到其他结点的最短路径。它的主要特点是以 起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。

弗洛伊德算法:

  1. 和 Dijkstra 算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法。该算法 名称以创始人之一、1978 年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名
  2. 弗洛伊德算法(Floyd)计算图中各个顶点之间的最短路径
  3. 迪杰斯特拉算法用于计算图中某一个顶点到其他顶点的最短路径。
  4. 弗洛伊德算法 VS 迪杰斯特拉算法:迪杰斯特拉算法通过选定的被访问顶点,求出从出发访问顶点到其他顶点 的最短路径;弗洛伊德算法中每一个顶点都是出发访问点,所以需要将每一个顶点看做被访问顶点,求出从每 一个顶点到其他顶点的最短路径。

马踏棋盘算法:

  1. 马踏棋盘算法也被称为骑士周游问题
  2. 将马随机放在国际象棋的 8×8 棋盘 Board[0~7][0~7]的某个方格中,马按走棋规则(马走日字)进行移动。要求 每个方格只进入一次,走遍棋盘上全部 64 个方格 3) 游戏演示: http://www.4399.com/flash/146267_2.htm\